Uses of vision by rats in play fighting and other close-quarter social interactions

Enucleated juvenile rats were compared to sighted juveniles, and tested over six trials. In some of these trials, the vibrissae were clipped and the test chamber was flooded with white noise. Even though the enucleated rats played, they did so in an atypical manner. They tended to initiate more playful and other social contacts, and were more likely to defend themselves if contacted. When they did defend themselves, they adopted behavior patterns that were more likely to evade the partner’s attack. In addition, the enucleated rats were hypersensitive to the partner, being more likely to respond defensively when contacted further from the nape (the main play target). All these changes in play fighting by nonsighted rats suggest that the loss of vision leads to motivational changes in activity and reactivity, and so has an indirect effect on play behavior. In addition, direct evidence is also provided to show that vision is used to orient attacks to the nape. When the vibrissae were closely clipped, the sighted rats continued to make direct attacks on the partner’s napes, whereas the nonsighted rats did not. Rather, they first contacted some other part of the partner’s body and then oriented to the nape. Another test paradigm was used to determine whether vision is used to trigger defensive responses. The rats were partially food deprived as adults and were filmed in a food wrenching and dodging situation where one rat was given a food pellet and the other allowed to steal it. Measurement of the distance at initiation of the lateral swerve away from the approaching partner (i.e., dodge) showed that when the vibrissae are clipped, the sighted rats continued to initiate dodges at the same distance, whereas the nonsighted rats could not. Therefore, vision appears to have an active role in organizing movement sequences of attack and defense in play fighting and other close-quarter interactions.

Enucleated juvenile rats were compared to sighted juveniles, and tested over six trials. In some of these trials, the vibrissae were clipped and the test chamber was flooded with white noise. Even though the enucleated rats played, they did so in an atypical manner. They tended to initiate more playful and other social contacts, and were more likely to defend themselves if contacted. When they did defend themselves, they adopted behavior patterns that were more likely to evade the partner’s attack. In addition, the enucleated rats were hypersensitive to the partner, being more likely to respond defensively when contacted further from the nape (the main play target). All these changes in play fighting by nonsighted rats suggest that the loss of vision leads to motivational changes in activity and reactivity, and so has an indirect effect on play behavior. In addition, direct evidence is also provided to show that vision is used to orient attacks to the nape. When the vibrissae were closely clipped, the sighted rats continued to make direct attacks on the partner’s napes, whereas the nonsighted rats did not. Rather, they first contacted some other part of the partner’s body and then oriented to the nape. Another test paradigm was used to determine whether vision is used to trigger defensive responses. The rats were partially food deprived as adults and were filmed in a food wrenching and dodging situation where one rat was given a food pellet and the other allowed to steal it. Measurement of the distance at initiation of the lateral swerve away from the approaching partner (i.e., dodge) showed that when the vibrissae are clipped, the sighted rats continued to initiate dodges at the same distance, whereas the nonsighted rats could not. Therefore, vision appears to have an active role in organizing movement sequences of attack and defense in play fighting and other close-quarter interactions.

Search